Strongly Coupled Nanotube Electromechanical Resonators
نویسندگان
چکیده
منابع مشابه
Spiral resonators for optimally efficient strongly coupled magnetic resonant systems
The wireless efficiency of the strongly coupled magnetic resonance (SCMR) method greatly depends on the Q-factors of the TX and RX resonators, which in turn are strongly dependent on the geometrical parameters of the resonators. This paper analytically derives the equations that can be used to design optimal spiral resonators for SCMR systems. In addition, our analysis illustrates that under ce...
متن کاملElectromechanical resonators from graphene sheets.
Nanoelectromechanical systems were fabricated from single- and multilayer graphene sheets by mechanically exfoliating thin sheets from graphite over trenches in silicon oxide. Vibrations with fundamental resonant frequencies in the megahertz range are actuated either optically or electrically and detected optically by interferometry. We demonstrate room-temperature charge sensitivities down to ...
متن کاملUltrahigh frequency nanotube resonators.
We report carbon-nanotube-based electromechanical resonators with the fundamental mode frequency over 1.3 GHz, operated in air at room temperature. A new combination of drive and detection methods allows for unprecedented measurement of both oscillation amplitude and phase and elucidates the relative mobility of static charges near the nanotube. The resonator serves as an exceptionally sensitiv...
متن کاملTheory of Nanotube Opto–electromechanical Device
Theory of a novel carbon nanotube opto–electronic switch is presented. Current control is realized at the molecular level by applying field of an atomic charge or atomic dipole across the nanotube channel, which can work as a local gate. In the case of a unit (1 e) point charge, close to the surface, a scattering potential strength is ∼ 2 eV if neglecting the screening. Thus, the screened poten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nano Letters
سال: 2016
ISSN: 1530-6984,1530-6992
DOI: 10.1021/acs.nanolett.6b01875